Рассчитать высоту треугольника со сторонами 84, 76 и 38
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{84 + 76 + 38}{2}} \normalsize = 99}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{99(99-84)(99-76)(99-38)}}{76}\normalsize = 37.9846794}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{99(99-84)(99-76)(99-38)}}{84}\normalsize = 34.3670909}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{99(99-84)(99-76)(99-38)}}{38}\normalsize = 75.9693589}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 84, 76 и 38 равна 37.9846794
Высота треугольника опущенная с вершины A на сторону BC со сторонами 84, 76 и 38 равна 34.3670909
Высота треугольника опущенная с вершины C на сторону AB со сторонами 84, 76 и 38 равна 75.9693589
Ссылка на результат
?n1=84&n2=76&n3=38
Найти высоту треугольника со сторонами 110, 109 и 38
Найти высоту треугольника со сторонами 113, 98 и 86
Найти высоту треугольника со сторонами 42, 42 и 17
Найти высоту треугольника со сторонами 94, 86 и 56
Найти высоту треугольника со сторонами 118, 109 и 12
Найти высоту треугольника со сторонами 145, 136 и 93
Найти высоту треугольника со сторонами 113, 98 и 86
Найти высоту треугольника со сторонами 42, 42 и 17
Найти высоту треугольника со сторонами 94, 86 и 56
Найти высоту треугольника со сторонами 118, 109 и 12
Найти высоту треугольника со сторонами 145, 136 и 93