Рассчитать высоту треугольника со сторонами 84, 76 и 57
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{84 + 76 + 57}{2}} \normalsize = 108.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{108.5(108.5-84)(108.5-76)(108.5-57)}}{76}\normalsize = 55.5085151}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{108.5(108.5-84)(108.5-76)(108.5-57)}}{84}\normalsize = 50.2219898}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{108.5(108.5-84)(108.5-76)(108.5-57)}}{57}\normalsize = 74.0113535}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 84, 76 и 57 равна 55.5085151
Высота треугольника опущенная с вершины A на сторону BC со сторонами 84, 76 и 57 равна 50.2219898
Высота треугольника опущенная с вершины C на сторону AB со сторонами 84, 76 и 57 равна 74.0113535
Ссылка на результат
?n1=84&n2=76&n3=57
Найти высоту треугольника со сторонами 107, 89 и 42
Найти высоту треугольника со сторонами 146, 126 и 96
Найти высоту треугольника со сторонами 126, 99 и 70
Найти высоту треугольника со сторонами 83, 83 и 71
Найти высоту треугольника со сторонами 130, 129 и 98
Найти высоту треугольника со сторонами 120, 115 и 74
Найти высоту треугольника со сторонами 146, 126 и 96
Найти высоту треугольника со сторонами 126, 99 и 70
Найти высоту треугольника со сторонами 83, 83 и 71
Найти высоту треугольника со сторонами 130, 129 и 98
Найти высоту треугольника со сторонами 120, 115 и 74