Рассчитать высоту треугольника со сторонами 84, 79 и 7
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{84 + 79 + 7}{2}} \normalsize = 85}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{85(85-84)(85-79)(85-7)}}{79}\normalsize = 5.04934789}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{85(85-84)(85-79)(85-7)}}{84}\normalsize = 4.74879147}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{85(85-84)(85-79)(85-7)}}{7}\normalsize = 56.9854976}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 84, 79 и 7 равна 5.04934789
Высота треугольника опущенная с вершины A на сторону BC со сторонами 84, 79 и 7 равна 4.74879147
Высота треугольника опущенная с вершины C на сторону AB со сторонами 84, 79 и 7 равна 56.9854976
Ссылка на результат
?n1=84&n2=79&n3=7
Найти высоту треугольника со сторонами 67, 57 и 50
Найти высоту треугольника со сторонами 138, 124 и 85
Найти высоту треугольника со сторонами 50, 44 и 10
Найти высоту треугольника со сторонами 116, 112 и 107
Найти высоту треугольника со сторонами 148, 136 и 127
Найти высоту треугольника со сторонами 117, 73 и 68
Найти высоту треугольника со сторонами 138, 124 и 85
Найти высоту треугольника со сторонами 50, 44 и 10
Найти высоту треугольника со сторонами 116, 112 и 107
Найти высоту треугольника со сторонами 148, 136 и 127
Найти высоту треугольника со сторонами 117, 73 и 68