Рассчитать высоту треугольника со сторонами 84, 80 и 6
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{84 + 80 + 6}{2}} \normalsize = 85}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{85(85-84)(85-80)(85-6)}}{80}\normalsize = 4.58087055}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{85(85-84)(85-80)(85-6)}}{84}\normalsize = 4.36273386}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{85(85-84)(85-80)(85-6)}}{6}\normalsize = 61.078274}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 84, 80 и 6 равна 4.58087055
Высота треугольника опущенная с вершины A на сторону BC со сторонами 84, 80 и 6 равна 4.36273386
Высота треугольника опущенная с вершины C на сторону AB со сторонами 84, 80 и 6 равна 61.078274
Ссылка на результат
?n1=84&n2=80&n3=6
Найти высоту треугольника со сторонами 88, 87 и 84
Найти высоту треугольника со сторонами 66, 60 и 16
Найти высоту треугольника со сторонами 33, 33 и 15
Найти высоту треугольника со сторонами 133, 107 и 40
Найти высоту треугольника со сторонами 118, 83 и 77
Найти высоту треугольника со сторонами 116, 115 и 7
Найти высоту треугольника со сторонами 66, 60 и 16
Найти высоту треугольника со сторонами 33, 33 и 15
Найти высоту треугольника со сторонами 133, 107 и 40
Найти высоту треугольника со сторонами 118, 83 и 77
Найти высоту треугольника со сторонами 116, 115 и 7