Рассчитать высоту треугольника со сторонами 84, 81 и 5

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{84 + 81 + 5}{2}} \normalsize = 85}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{85(85-84)(85-81)(85-5)}}{81}\normalsize = 4.07220309}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{85(85-84)(85-81)(85-5)}}{84}\normalsize = 3.92676726}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{85(85-84)(85-81)(85-5)}}{5}\normalsize = 65.96969}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 84, 81 и 5 равна 4.07220309
Высота треугольника опущенная с вершины A на сторону BC со сторонами 84, 81 и 5 равна 3.92676726
Высота треугольника опущенная с вершины C на сторону AB со сторонами 84, 81 и 5 равна 65.96969
Ссылка на результат
?n1=84&n2=81&n3=5