Рассчитать высоту треугольника со сторонами 85, 57 и 38
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{85 + 57 + 38}{2}} \normalsize = 90}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{90(90-85)(90-57)(90-38)}}{57}\normalsize = 30.8333021}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{90(90-85)(90-57)(90-38)}}{85}\normalsize = 20.6764497}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{90(90-85)(90-57)(90-38)}}{38}\normalsize = 46.2499532}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 85, 57 и 38 равна 30.8333021
Высота треугольника опущенная с вершины A на сторону BC со сторонами 85, 57 и 38 равна 20.6764497
Высота треугольника опущенная с вершины C на сторону AB со сторонами 85, 57 и 38 равна 46.2499532
Ссылка на результат
?n1=85&n2=57&n3=38
Найти высоту треугольника со сторонами 129, 128 и 54
Найти высоту треугольника со сторонами 77, 54 и 43
Найти высоту треугольника со сторонами 118, 72 и 56
Найти высоту треугольника со сторонами 118, 104 и 32
Найти высоту треугольника со сторонами 139, 126 и 116
Найти высоту треугольника со сторонами 144, 114 и 72
Найти высоту треугольника со сторонами 77, 54 и 43
Найти высоту треугольника со сторонами 118, 72 и 56
Найти высоту треугольника со сторонами 118, 104 и 32
Найти высоту треугольника со сторонами 139, 126 и 116
Найти высоту треугольника со сторонами 144, 114 и 72