Рассчитать высоту треугольника со сторонами 85, 59 и 54
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{85 + 59 + 54}{2}} \normalsize = 99}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{99(99-85)(99-59)(99-54)}}{59}\normalsize = 53.5421556}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{99(99-85)(99-59)(99-54)}}{85}\normalsize = 37.1645551}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{99(99-85)(99-59)(99-54)}}{54}\normalsize = 58.4997626}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 85, 59 и 54 равна 53.5421556
Высота треугольника опущенная с вершины A на сторону BC со сторонами 85, 59 и 54 равна 37.1645551
Высота треугольника опущенная с вершины C на сторону AB со сторонами 85, 59 и 54 равна 58.4997626
Ссылка на результат
?n1=85&n2=59&n3=54
Найти высоту треугольника со сторонами 130, 130 и 36
Найти высоту треугольника со сторонами 126, 126 и 87
Найти высоту треугольника со сторонами 139, 126 и 30
Найти высоту треугольника со сторонами 148, 120 и 85
Найти высоту треугольника со сторонами 128, 124 и 99
Найти высоту треугольника со сторонами 142, 98 и 80
Найти высоту треугольника со сторонами 126, 126 и 87
Найти высоту треугольника со сторонами 139, 126 и 30
Найти высоту треугольника со сторонами 148, 120 и 85
Найти высоту треугольника со сторонами 128, 124 и 99
Найти высоту треугольника со сторонами 142, 98 и 80