Рассчитать высоту треугольника со сторонами 85, 60 и 41
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{85 + 60 + 41}{2}} \normalsize = 93}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{93(93-85)(93-60)(93-41)}}{60}\normalsize = 37.6637757}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{93(93-85)(93-60)(93-41)}}{85}\normalsize = 26.5861946}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{93(93-85)(93-60)(93-41)}}{41}\normalsize = 55.1177205}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 85, 60 и 41 равна 37.6637757
Высота треугольника опущенная с вершины A на сторону BC со сторонами 85, 60 и 41 равна 26.5861946
Высота треугольника опущенная с вершины C на сторону AB со сторонами 85, 60 и 41 равна 55.1177205
Ссылка на результат
?n1=85&n2=60&n3=41
Найти высоту треугольника со сторонами 136, 111 и 107
Найти высоту треугольника со сторонами 124, 121 и 32
Найти высоту треугольника со сторонами 117, 111 и 81
Найти высоту треугольника со сторонами 138, 113 и 79
Найти высоту треугольника со сторонами 145, 140 и 71
Найти высоту треугольника со сторонами 33, 31 и 15
Найти высоту треугольника со сторонами 124, 121 и 32
Найти высоту треугольника со сторонами 117, 111 и 81
Найти высоту треугольника со сторонами 138, 113 и 79
Найти высоту треугольника со сторонами 145, 140 и 71
Найти высоту треугольника со сторонами 33, 31 и 15