Рассчитать высоту треугольника со сторонами 85, 65 и 56
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{85 + 65 + 56}{2}} \normalsize = 103}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{103(103-85)(103-65)(103-56)}}{65}\normalsize = 55.9902274}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{103(103-85)(103-65)(103-56)}}{85}\normalsize = 42.8160562}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{103(103-85)(103-65)(103-56)}}{56}\normalsize = 64.9886568}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 85, 65 и 56 равна 55.9902274
Высота треугольника опущенная с вершины A на сторону BC со сторонами 85, 65 и 56 равна 42.8160562
Высота треугольника опущенная с вершины C на сторону AB со сторонами 85, 65 и 56 равна 64.9886568
Ссылка на результат
?n1=85&n2=65&n3=56
Найти высоту треугольника со сторонами 133, 116 и 76
Найти высоту треугольника со сторонами 50, 43 и 38
Найти высоту треугольника со сторонами 143, 109 и 65
Найти высоту треугольника со сторонами 116, 114 и 100
Найти высоту треугольника со сторонами 128, 84 и 73
Найти высоту треугольника со сторонами 128, 89 и 76
Найти высоту треугольника со сторонами 50, 43 и 38
Найти высоту треугольника со сторонами 143, 109 и 65
Найти высоту треугольника со сторонами 116, 114 и 100
Найти высоту треугольника со сторонами 128, 84 и 73
Найти высоту треугольника со сторонами 128, 89 и 76