Рассчитать высоту треугольника со сторонами 85, 69 и 22
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{85 + 69 + 22}{2}} \normalsize = 88}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{88(88-85)(88-69)(88-22)}}{69}\normalsize = 16.6775264}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{88(88-85)(88-69)(88-22)}}{85}\normalsize = 13.5382273}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{88(88-85)(88-69)(88-22)}}{22}\normalsize = 52.3067873}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 85, 69 и 22 равна 16.6775264
Высота треугольника опущенная с вершины A на сторону BC со сторонами 85, 69 и 22 равна 13.5382273
Высота треугольника опущенная с вершины C на сторону AB со сторонами 85, 69 и 22 равна 52.3067873
Ссылка на результат
?n1=85&n2=69&n3=22
Найти высоту треугольника со сторонами 145, 122 и 36
Найти высоту треугольника со сторонами 119, 118 и 39
Найти высоту треугольника со сторонами 74, 49 и 32
Найти высоту треугольника со сторонами 146, 99 и 65
Найти высоту треугольника со сторонами 88, 62 и 50
Найти высоту треугольника со сторонами 54, 48 и 23
Найти высоту треугольника со сторонами 119, 118 и 39
Найти высоту треугольника со сторонами 74, 49 и 32
Найти высоту треугольника со сторонами 146, 99 и 65
Найти высоту треугольника со сторонами 88, 62 и 50
Найти высоту треугольника со сторонами 54, 48 и 23