Рассчитать высоту треугольника со сторонами 85, 75 и 25

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{85 + 75 + 25}{2}} \normalsize = 92.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{92.5(92.5-85)(92.5-75)(92.5-25)}}{75}\normalsize = 24.1402154}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{92.5(92.5-85)(92.5-75)(92.5-25)}}{85}\normalsize = 21.3001901}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{92.5(92.5-85)(92.5-75)(92.5-25)}}{25}\normalsize = 72.4206462}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 85, 75 и 25 равна 24.1402154
Высота треугольника опущенная с вершины A на сторону BC со сторонами 85, 75 и 25 равна 21.3001901
Высота треугольника опущенная с вершины C на сторону AB со сторонами 85, 75 и 25 равна 72.4206462
Ссылка на результат
?n1=85&n2=75&n3=25