Рассчитать высоту треугольника со сторонами 85, 81 и 41
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{85 + 81 + 41}{2}} \normalsize = 103.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{103.5(103.5-85)(103.5-81)(103.5-41)}}{81}\normalsize = 40.5165337}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{103.5(103.5-85)(103.5-81)(103.5-41)}}{85}\normalsize = 38.6098733}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{103.5(103.5-85)(103.5-81)(103.5-41)}}{41}\normalsize = 80.0448593}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 85, 81 и 41 равна 40.5165337
Высота треугольника опущенная с вершины A на сторону BC со сторонами 85, 81 и 41 равна 38.6098733
Высота треугольника опущенная с вершины C на сторону AB со сторонами 85, 81 и 41 равна 80.0448593
Ссылка на результат
?n1=85&n2=81&n3=41
Найти высоту треугольника со сторонами 55, 43 и 14
Найти высоту треугольника со сторонами 141, 140 и 44
Найти высоту треугольника со сторонами 129, 104 и 37
Найти высоту треугольника со сторонами 108, 87 и 30
Найти высоту треугольника со сторонами 96, 95 и 16
Найти высоту треугольника со сторонами 137, 105 и 97
Найти высоту треугольника со сторонами 141, 140 и 44
Найти высоту треугольника со сторонами 129, 104 и 37
Найти высоту треугольника со сторонами 108, 87 и 30
Найти высоту треугольника со сторонами 96, 95 и 16
Найти высоту треугольника со сторонами 137, 105 и 97