Рассчитать высоту треугольника со сторонами 85, 82 и 59
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{85 + 82 + 59}{2}} \normalsize = 113}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{113(113-85)(113-82)(113-59)}}{82}\normalsize = 56.1322056}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{113(113-85)(113-82)(113-59)}}{85}\normalsize = 54.151069}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{113(113-85)(113-82)(113-59)}}{59}\normalsize = 78.0142519}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 85, 82 и 59 равна 56.1322056
Высота треугольника опущенная с вершины A на сторону BC со сторонами 85, 82 и 59 равна 54.151069
Высота треугольника опущенная с вершины C на сторону AB со сторонами 85, 82 и 59 равна 78.0142519
Ссылка на результат
?n1=85&n2=82&n3=59
Найти высоту треугольника со сторонами 138, 90 и 73
Найти высоту треугольника со сторонами 129, 107 и 61
Найти высоту треугольника со сторонами 143, 127 и 84
Найти высоту треугольника со сторонами 103, 97 и 16
Найти высоту треугольника со сторонами 128, 95 и 39
Найти высоту треугольника со сторонами 105, 65 и 63
Найти высоту треугольника со сторонами 129, 107 и 61
Найти высоту треугольника со сторонами 143, 127 и 84
Найти высоту треугольника со сторонами 103, 97 и 16
Найти высоту треугольника со сторонами 128, 95 и 39
Найти высоту треугольника со сторонами 105, 65 и 63