Рассчитать высоту треугольника со сторонами 85, 83 и 50
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{85 + 83 + 50}{2}} \normalsize = 109}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{109(109-85)(109-83)(109-50)}}{83}\normalsize = 48.270684}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{109(109-85)(109-83)(109-50)}}{85}\normalsize = 47.1349032}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{109(109-85)(109-83)(109-50)}}{50}\normalsize = 80.1293355}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 85, 83 и 50 равна 48.270684
Высота треугольника опущенная с вершины A на сторону BC со сторонами 85, 83 и 50 равна 47.1349032
Высота треугольника опущенная с вершины C на сторону AB со сторонами 85, 83 и 50 равна 80.1293355
Ссылка на результат
?n1=85&n2=83&n3=50
Найти высоту треугольника со сторонами 115, 65 и 65
Найти высоту треугольника со сторонами 150, 145 и 137
Найти высоту треугольника со сторонами 112, 112 и 7
Найти высоту треугольника со сторонами 65, 64 и 30
Найти высоту треугольника со сторонами 100, 62 и 44
Найти высоту треугольника со сторонами 144, 140 и 99
Найти высоту треугольника со сторонами 150, 145 и 137
Найти высоту треугольника со сторонами 112, 112 и 7
Найти высоту треугольника со сторонами 65, 64 и 30
Найти высоту треугольника со сторонами 100, 62 и 44
Найти высоту треугольника со сторонами 144, 140 и 99