Рассчитать высоту треугольника со сторонами 86, 52 и 38
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{86 + 52 + 38}{2}} \normalsize = 88}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{88(88-86)(88-52)(88-38)}}{52}\normalsize = 21.6480727}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{88(88-86)(88-52)(88-38)}}{86}\normalsize = 13.0895324}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{88(88-86)(88-52)(88-38)}}{38}\normalsize = 29.6236785}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 86, 52 и 38 равна 21.6480727
Высота треугольника опущенная с вершины A на сторону BC со сторонами 86, 52 и 38 равна 13.0895324
Высота треугольника опущенная с вершины C на сторону AB со сторонами 86, 52 и 38 равна 29.6236785
Ссылка на результат
?n1=86&n2=52&n3=38
Найти высоту треугольника со сторонами 112, 75 и 58
Найти высоту треугольника со сторонами 93, 79 и 23
Найти высоту треугольника со сторонами 108, 102 и 16
Найти высоту треугольника со сторонами 47, 44 и 26
Найти высоту треугольника со сторонами 112, 107 и 20
Найти высоту треугольника со сторонами 120, 113 и 99
Найти высоту треугольника со сторонами 93, 79 и 23
Найти высоту треугольника со сторонами 108, 102 и 16
Найти высоту треугольника со сторонами 47, 44 и 26
Найти высоту треугольника со сторонами 112, 107 и 20
Найти высоту треугольника со сторонами 120, 113 и 99