Рассчитать высоту треугольника со сторонами 86, 59 и 45

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{86 + 59 + 45}{2}} \normalsize = 95}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{95(95-86)(95-59)(95-45)}}{59}\normalsize = 42.0530301}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{95(95-86)(95-59)(95-45)}}{86}\normalsize = 28.8503346}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{95(95-86)(95-59)(95-45)}}{45}\normalsize = 55.136195}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 86, 59 и 45 равна 42.0530301
Высота треугольника опущенная с вершины A на сторону BC со сторонами 86, 59 и 45 равна 28.8503346
Высота треугольника опущенная с вершины C на сторону AB со сторонами 86, 59 и 45 равна 55.136195
Ссылка на результат
?n1=86&n2=59&n3=45