Рассчитать высоту треугольника со сторонами 86, 60 и 36
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{86 + 60 + 36}{2}} \normalsize = 91}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{91(91-86)(91-60)(91-36)}}{60}\normalsize = 29.3593635}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{91(91-86)(91-60)(91-36)}}{86}\normalsize = 20.4832768}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{91(91-86)(91-60)(91-36)}}{36}\normalsize = 48.9322724}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 86, 60 и 36 равна 29.3593635
Высота треугольника опущенная с вершины A на сторону BC со сторонами 86, 60 и 36 равна 20.4832768
Высота треугольника опущенная с вершины C на сторону AB со сторонами 86, 60 и 36 равна 48.9322724
Ссылка на результат
?n1=86&n2=60&n3=36
Найти высоту треугольника со сторонами 47, 29 и 19
Найти высоту треугольника со сторонами 72, 65 и 28
Найти высоту треугольника со сторонами 104, 98 и 32
Найти высоту треугольника со сторонами 141, 96 и 69
Найти высоту треугольника со сторонами 37, 21 и 20
Найти высоту треугольника со сторонами 96, 91 и 75
Найти высоту треугольника со сторонами 72, 65 и 28
Найти высоту треугольника со сторонами 104, 98 и 32
Найти высоту треугольника со сторонами 141, 96 и 69
Найти высоту треугольника со сторонами 37, 21 и 20
Найти высоту треугольника со сторонами 96, 91 и 75