Рассчитать высоту треугольника со сторонами 86, 61 и 31
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{86 + 61 + 31}{2}} \normalsize = 89}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{89(89-86)(89-61)(89-31)}}{61}\normalsize = 21.5898092}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{89(89-86)(89-61)(89-31)}}{86}\normalsize = 15.3137019}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{89(89-86)(89-61)(89-31)}}{31}\normalsize = 42.4831729}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 86, 61 и 31 равна 21.5898092
Высота треугольника опущенная с вершины A на сторону BC со сторонами 86, 61 и 31 равна 15.3137019
Высота треугольника опущенная с вершины C на сторону AB со сторонами 86, 61 и 31 равна 42.4831729
Ссылка на результат
?n1=86&n2=61&n3=31
Найти высоту треугольника со сторонами 76, 67 и 48
Найти высоту треугольника со сторонами 63, 36 и 30
Найти высоту треугольника со сторонами 122, 69 и 58
Найти высоту треугольника со сторонами 135, 102 и 73
Найти высоту треугольника со сторонами 135, 88 и 87
Найти высоту треугольника со сторонами 110, 96 и 90
Найти высоту треугольника со сторонами 63, 36 и 30
Найти высоту треугольника со сторонами 122, 69 и 58
Найти высоту треугольника со сторонами 135, 102 и 73
Найти высоту треугольника со сторонами 135, 88 и 87
Найти высоту треугольника со сторонами 110, 96 и 90