Рассчитать высоту треугольника со сторонами 86, 64 и 23
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{86 + 64 + 23}{2}} \normalsize = 86.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{86.5(86.5-86)(86.5-64)(86.5-23)}}{64}\normalsize = 7.76821433}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{86.5(86.5-86)(86.5-64)(86.5-23)}}{86}\normalsize = 5.78099671}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{86.5(86.5-86)(86.5-64)(86.5-23)}}{23}\normalsize = 21.6159007}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 86, 64 и 23 равна 7.76821433
Высота треугольника опущенная с вершины A на сторону BC со сторонами 86, 64 и 23 равна 5.78099671
Высота треугольника опущенная с вершины C на сторону AB со сторонами 86, 64 и 23 равна 21.6159007
Ссылка на результат
?n1=86&n2=64&n3=23
Найти высоту треугольника со сторонами 95, 73 и 52
Найти высоту треугольника со сторонами 103, 73 и 54
Найти высоту треугольника со сторонами 150, 146 и 7
Найти высоту треугольника со сторонами 149, 132 и 103
Найти высоту треугольника со сторонами 130, 121 и 31
Найти высоту треугольника со сторонами 128, 100 и 95
Найти высоту треугольника со сторонами 103, 73 и 54
Найти высоту треугольника со сторонами 150, 146 и 7
Найти высоту треугольника со сторонами 149, 132 и 103
Найти высоту треугольника со сторонами 130, 121 и 31
Найти высоту треугольника со сторонами 128, 100 и 95