Рассчитать высоту треугольника со сторонами 86, 64 и 56
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{86 + 64 + 56}{2}} \normalsize = 103}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{103(103-86)(103-64)(103-56)}}{64}\normalsize = 55.9853409}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{103(103-86)(103-64)(103-56)}}{86}\normalsize = 41.6635095}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{103(103-86)(103-64)(103-56)}}{56}\normalsize = 63.9832468}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 86, 64 и 56 равна 55.9853409
Высота треугольника опущенная с вершины A на сторону BC со сторонами 86, 64 и 56 равна 41.6635095
Высота треугольника опущенная с вершины C на сторону AB со сторонами 86, 64 и 56 равна 63.9832468
Ссылка на результат
?n1=86&n2=64&n3=56
Найти высоту треугольника со сторонами 148, 139 и 37
Найти высоту треугольника со сторонами 134, 103 и 42
Найти высоту треугольника со сторонами 111, 111 и 92
Найти высоту треугольника со сторонами 44, 31 и 14
Найти высоту треугольника со сторонами 145, 94 и 81
Найти высоту треугольника со сторонами 60, 48 и 21
Найти высоту треугольника со сторонами 134, 103 и 42
Найти высоту треугольника со сторонами 111, 111 и 92
Найти высоту треугольника со сторонами 44, 31 и 14
Найти высоту треугольника со сторонами 145, 94 и 81
Найти высоту треугольника со сторонами 60, 48 и 21