Рассчитать высоту треугольника со сторонами 86, 65 и 50
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{86 + 65 + 50}{2}} \normalsize = 100.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{100.5(100.5-86)(100.5-65)(100.5-50)}}{65}\normalsize = 49.7328716}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{100.5(100.5-86)(100.5-65)(100.5-50)}}{86}\normalsize = 37.5887983}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{100.5(100.5-86)(100.5-65)(100.5-50)}}{50}\normalsize = 64.6527331}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 86, 65 и 50 равна 49.7328716
Высота треугольника опущенная с вершины A на сторону BC со сторонами 86, 65 и 50 равна 37.5887983
Высота треугольника опущенная с вершины C на сторону AB со сторонами 86, 65 и 50 равна 64.6527331
Ссылка на результат
?n1=86&n2=65&n3=50
Найти высоту треугольника со сторонами 87, 68 и 25
Найти высоту треугольника со сторонами 78, 52 и 40
Найти высоту треугольника со сторонами 129, 127 и 44
Найти высоту треугольника со сторонами 102, 94 и 81
Найти высоту треугольника со сторонами 110, 97 и 52
Найти высоту треугольника со сторонами 147, 117 и 45
Найти высоту треугольника со сторонами 78, 52 и 40
Найти высоту треугольника со сторонами 129, 127 и 44
Найти высоту треугольника со сторонами 102, 94 и 81
Найти высоту треугольника со сторонами 110, 97 и 52
Найти высоту треугольника со сторонами 147, 117 и 45