Рассчитать высоту треугольника со сторонами 86, 65 и 61
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{86 + 65 + 61}{2}} \normalsize = 106}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{106(106-86)(106-65)(106-61)}}{65}\normalsize = 60.8531067}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{106(106-86)(106-65)(106-61)}}{86}\normalsize = 45.9936271}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{106(106-86)(106-65)(106-61)}}{61}\normalsize = 64.8434743}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 86, 65 и 61 равна 60.8531067
Высота треугольника опущенная с вершины A на сторону BC со сторонами 86, 65 и 61 равна 45.9936271
Высота треугольника опущенная с вершины C на сторону AB со сторонами 86, 65 и 61 равна 64.8434743
Ссылка на результат
?n1=86&n2=65&n3=61
Найти высоту треугольника со сторонами 124, 107 и 95
Найти высоту треугольника со сторонами 87, 59 и 51
Найти высоту треугольника со сторонами 142, 107 и 81
Найти высоту треугольника со сторонами 99, 76 и 53
Найти высоту треугольника со сторонами 136, 115 и 53
Найти высоту треугольника со сторонами 150, 100 и 71
Найти высоту треугольника со сторонами 87, 59 и 51
Найти высоту треугольника со сторонами 142, 107 и 81
Найти высоту треугольника со сторонами 99, 76 и 53
Найти высоту треугольника со сторонами 136, 115 и 53
Найти высоту треугольника со сторонами 150, 100 и 71