Рассчитать высоту треугольника со сторонами 86, 70 и 37
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{86 + 70 + 37}{2}} \normalsize = 96.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{96.5(96.5-86)(96.5-70)(96.5-37)}}{70}\normalsize = 36.1136747}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{96.5(96.5-86)(96.5-70)(96.5-37)}}{86}\normalsize = 29.3948515}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{96.5(96.5-86)(96.5-70)(96.5-37)}}{37}\normalsize = 68.3231683}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 86, 70 и 37 равна 36.1136747
Высота треугольника опущенная с вершины A на сторону BC со сторонами 86, 70 и 37 равна 29.3948515
Высота треугольника опущенная с вершины C на сторону AB со сторонами 86, 70 и 37 равна 68.3231683
Ссылка на результат
?n1=86&n2=70&n3=37
Найти высоту треугольника со сторонами 148, 126 и 62
Найти высоту треугольника со сторонами 103, 87 и 43
Найти высоту треугольника со сторонами 59, 49 и 48
Найти высоту треугольника со сторонами 120, 90 и 40
Найти высоту треугольника со сторонами 149, 148 и 139
Найти высоту треугольника со сторонами 146, 146 и 143
Найти высоту треугольника со сторонами 103, 87 и 43
Найти высоту треугольника со сторонами 59, 49 и 48
Найти высоту треугольника со сторонами 120, 90 и 40
Найти высоту треугольника со сторонами 149, 148 и 139
Найти высоту треугольника со сторонами 146, 146 и 143