Рассчитать высоту треугольника со сторонами 86, 78 и 64
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{86 + 78 + 64}{2}} \normalsize = 114}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{114(114-86)(114-78)(114-64)}}{78}\normalsize = 61.4614903}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{114(114-86)(114-78)(114-64)}}{86}\normalsize = 55.7441424}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{114(114-86)(114-78)(114-64)}}{64}\normalsize = 74.9061913}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 86, 78 и 64 равна 61.4614903
Высота треугольника опущенная с вершины A на сторону BC со сторонами 86, 78 и 64 равна 55.7441424
Высота треугольника опущенная с вершины C на сторону AB со сторонами 86, 78 и 64 равна 74.9061913
Ссылка на результат
?n1=86&n2=78&n3=64
Найти высоту треугольника со сторонами 61, 47 и 19
Найти высоту треугольника со сторонами 146, 107 и 56
Найти высоту треугольника со сторонами 110, 74 и 62
Найти высоту треугольника со сторонами 131, 112 и 88
Найти высоту треугольника со сторонами 115, 99 и 58
Найти высоту треугольника со сторонами 146, 107 и 47
Найти высоту треугольника со сторонами 146, 107 и 56
Найти высоту треугольника со сторонами 110, 74 и 62
Найти высоту треугольника со сторонами 131, 112 и 88
Найти высоту треугольника со сторонами 115, 99 и 58
Найти высоту треугольника со сторонами 146, 107 и 47