Рассчитать высоту треугольника со сторонами 86, 82 и 17
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{86 + 82 + 17}{2}} \normalsize = 92.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{92.5(92.5-86)(92.5-82)(92.5-17)}}{82}\normalsize = 16.8388262}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{92.5(92.5-86)(92.5-82)(92.5-17)}}{86}\normalsize = 16.0556249}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{92.5(92.5-86)(92.5-82)(92.5-17)}}{17}\normalsize = 81.2225732}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 86, 82 и 17 равна 16.8388262
Высота треугольника опущенная с вершины A на сторону BC со сторонами 86, 82 и 17 равна 16.0556249
Высота треугольника опущенная с вершины C на сторону AB со сторонами 86, 82 и 17 равна 81.2225732
Ссылка на результат
?n1=86&n2=82&n3=17
Найти высоту треугольника со сторонами 93, 75 и 41
Найти высоту треугольника со сторонами 144, 127 и 99
Найти высоту треугольника со сторонами 126, 88 и 77
Найти высоту треугольника со сторонами 92, 69 и 52
Найти высоту треугольника со сторонами 87, 72 и 62
Найти высоту треугольника со сторонами 86, 68 и 19
Найти высоту треугольника со сторонами 144, 127 и 99
Найти высоту треугольника со сторонами 126, 88 и 77
Найти высоту треугольника со сторонами 92, 69 и 52
Найти высоту треугольника со сторонами 87, 72 и 62
Найти высоту треугольника со сторонами 86, 68 и 19