Рассчитать высоту треугольника со сторонами 86, 82 и 64
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{86 + 82 + 64}{2}} \normalsize = 116}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{116(116-86)(116-82)(116-64)}}{82}\normalsize = 60.4988188}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{116(116-86)(116-82)(116-64)}}{86}\normalsize = 57.6849203}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{116(116-86)(116-82)(116-64)}}{64}\normalsize = 77.5141116}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 86, 82 и 64 равна 60.4988188
Высота треугольника опущенная с вершины A на сторону BC со сторонами 86, 82 и 64 равна 57.6849203
Высота треугольника опущенная с вершины C на сторону AB со сторонами 86, 82 и 64 равна 77.5141116
Ссылка на результат
?n1=86&n2=82&n3=64
Найти высоту треугольника со сторонами 140, 117 и 71
Найти высоту треугольника со сторонами 132, 79 и 58
Найти высоту треугольника со сторонами 63, 54 и 33
Найти высоту треугольника со сторонами 120, 99 и 87
Найти высоту треугольника со сторонами 143, 107 и 61
Найти высоту треугольника со сторонами 83, 82 и 9
Найти высоту треугольника со сторонами 132, 79 и 58
Найти высоту треугольника со сторонами 63, 54 и 33
Найти высоту треугольника со сторонами 120, 99 и 87
Найти высоту треугольника со сторонами 143, 107 и 61
Найти высоту треугольника со сторонами 83, 82 и 9