Рассчитать высоту треугольника со сторонами 86, 83 и 23
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{86 + 83 + 23}{2}} \normalsize = 96}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{96(96-86)(96-83)(96-23)}}{83}\normalsize = 22.9996182}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{96(96-86)(96-83)(96-23)}}{86}\normalsize = 22.1973059}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{96(96-86)(96-83)(96-23)}}{23}\normalsize = 82.9986221}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 86, 83 и 23 равна 22.9996182
Высота треугольника опущенная с вершины A на сторону BC со сторонами 86, 83 и 23 равна 22.1973059
Высота треугольника опущенная с вершины C на сторону AB со сторонами 86, 83 и 23 равна 82.9986221
Ссылка на результат
?n1=86&n2=83&n3=23
Найти высоту треугольника со сторонами 115, 109 и 70
Найти высоту треугольника со сторонами 132, 115 и 31
Найти высоту треугольника со сторонами 84, 71 и 42
Найти высоту треугольника со сторонами 125, 114 и 60
Найти высоту треугольника со сторонами 106, 86 и 39
Найти высоту треугольника со сторонами 88, 75 и 35
Найти высоту треугольника со сторонами 132, 115 и 31
Найти высоту треугольника со сторонами 84, 71 и 42
Найти высоту треугольника со сторонами 125, 114 и 60
Найти высоту треугольника со сторонами 106, 86 и 39
Найти высоту треугольника со сторонами 88, 75 и 35