Рассчитать высоту треугольника со сторонами 86, 84 и 74
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{86 + 84 + 74}{2}} \normalsize = 122}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{122(122-86)(122-84)(122-74)}}{84}\normalsize = 67.3898194}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{122(122-86)(122-84)(122-74)}}{86}\normalsize = 65.8226143}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{122(122-86)(122-84)(122-74)}}{74}\normalsize = 76.4965517}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 86, 84 и 74 равна 67.3898194
Высота треугольника опущенная с вершины A на сторону BC со сторонами 86, 84 и 74 равна 65.8226143
Высота треугольника опущенная с вершины C на сторону AB со сторонами 86, 84 и 74 равна 76.4965517
Ссылка на результат
?n1=86&n2=84&n3=74
Найти высоту треугольника со сторонами 113, 95 и 63
Найти высоту треугольника со сторонами 150, 145 и 6
Найти высоту треугольника со сторонами 88, 74 и 48
Найти высоту треугольника со сторонами 123, 107 и 37
Найти высоту треугольника со сторонами 112, 108 и 100
Найти высоту треугольника со сторонами 141, 94 и 79
Найти высоту треугольника со сторонами 150, 145 и 6
Найти высоту треугольника со сторонами 88, 74 и 48
Найти высоту треугольника со сторонами 123, 107 и 37
Найти высоту треугольника со сторонами 112, 108 и 100
Найти высоту треугольника со сторонами 141, 94 и 79