Рассчитать высоту треугольника со сторонами 87, 62 и 45
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{87 + 62 + 45}{2}} \normalsize = 97}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{97(97-87)(97-62)(97-45)}}{62}\normalsize = 42.86076}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{97(97-87)(97-62)(97-45)}}{87}\normalsize = 30.5444496}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{97(97-87)(97-62)(97-45)}}{45}\normalsize = 59.0526026}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 87, 62 и 45 равна 42.86076
Высота треугольника опущенная с вершины A на сторону BC со сторонами 87, 62 и 45 равна 30.5444496
Высота треугольника опущенная с вершины C на сторону AB со сторонами 87, 62 и 45 равна 59.0526026
Ссылка на результат
?n1=87&n2=62&n3=45
Найти высоту треугольника со сторонами 142, 135 и 83
Найти высоту треугольника со сторонами 145, 94 и 59
Найти высоту треугольника со сторонами 127, 80 и 49
Найти высоту треугольника со сторонами 130, 121 и 45
Найти высоту треугольника со сторонами 69, 56 и 51
Найти высоту треугольника со сторонами 92, 81 и 46
Найти высоту треугольника со сторонами 145, 94 и 59
Найти высоту треугольника со сторонами 127, 80 и 49
Найти высоту треугольника со сторонами 130, 121 и 45
Найти высоту треугольника со сторонами 69, 56 и 51
Найти высоту треугольника со сторонами 92, 81 и 46