Рассчитать высоту треугольника со сторонами 87, 62 и 48
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{87 + 62 + 48}{2}} \normalsize = 98.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{98.5(98.5-87)(98.5-62)(98.5-48)}}{62}\normalsize = 46.6119705}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{98.5(98.5-87)(98.5-62)(98.5-48)}}{87}\normalsize = 33.2177261}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{98.5(98.5-87)(98.5-62)(98.5-48)}}{48}\normalsize = 60.2071286}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 87, 62 и 48 равна 46.6119705
Высота треугольника опущенная с вершины A на сторону BC со сторонами 87, 62 и 48 равна 33.2177261
Высота треугольника опущенная с вершины C на сторону AB со сторонами 87, 62 и 48 равна 60.2071286
Ссылка на результат
?n1=87&n2=62&n3=48
Найти высоту треугольника со сторонами 136, 87 и 50
Найти высоту треугольника со сторонами 133, 129 и 106
Найти высоту треугольника со сторонами 128, 108 и 89
Найти высоту треугольника со сторонами 114, 87 и 30
Найти высоту треугольника со сторонами 101, 70 и 57
Найти высоту треугольника со сторонами 122, 95 и 52
Найти высоту треугольника со сторонами 133, 129 и 106
Найти высоту треугольника со сторонами 128, 108 и 89
Найти высоту треугольника со сторонами 114, 87 и 30
Найти высоту треугольника со сторонами 101, 70 и 57
Найти высоту треугольника со сторонами 122, 95 и 52