Рассчитать высоту треугольника со сторонами 87, 68 и 40

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{87 + 68 + 40}{2}} \normalsize = 97.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{97.5(97.5-87)(97.5-68)(97.5-40)}}{68}\normalsize = 38.7581439}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{97.5(97.5-87)(97.5-68)(97.5-40)}}{87}\normalsize = 30.2937217}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{97.5(97.5-87)(97.5-68)(97.5-40)}}{40}\normalsize = 65.8888446}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 87, 68 и 40 равна 38.7581439
Высота треугольника опущенная с вершины A на сторону BC со сторонами 87, 68 и 40 равна 30.2937217
Высота треугольника опущенная с вершины C на сторону AB со сторонами 87, 68 и 40 равна 65.8888446
Ссылка на результат
?n1=87&n2=68&n3=40