Рассчитать высоту треугольника со сторонами 87, 69 и 22

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{87 + 69 + 22}{2}} \normalsize = 89}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{89(89-87)(89-69)(89-22)}}{69}\normalsize = 14.1560897}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{89(89-87)(89-69)(89-22)}}{87}\normalsize = 11.2272435}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{89(89-87)(89-69)(89-22)}}{22}\normalsize = 44.3986449}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 87, 69 и 22 равна 14.1560897
Высота треугольника опущенная с вершины A на сторону BC со сторонами 87, 69 и 22 равна 11.2272435
Высота треугольника опущенная с вершины C на сторону AB со сторонами 87, 69 и 22 равна 44.3986449
Ссылка на результат
?n1=87&n2=69&n3=22