Рассчитать высоту треугольника со сторонами 87, 69 и 52
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{87 + 69 + 52}{2}} \normalsize = 104}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{104(104-87)(104-69)(104-52)}}{69}\normalsize = 51.9945387}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{104(104-87)(104-69)(104-52)}}{87}\normalsize = 41.2370479}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{104(104-87)(104-69)(104-52)}}{52}\normalsize = 68.9927532}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 87, 69 и 52 равна 51.9945387
Высота треугольника опущенная с вершины A на сторону BC со сторонами 87, 69 и 52 равна 41.2370479
Высота треугольника опущенная с вершины C на сторону AB со сторонами 87, 69 и 52 равна 68.9927532
Ссылка на результат
?n1=87&n2=69&n3=52
Найти высоту треугольника со сторонами 82, 78 и 14
Найти высоту треугольника со сторонами 93, 80 и 50
Найти высоту треугольника со сторонами 81, 74 и 26
Найти высоту треугольника со сторонами 108, 100 и 13
Найти высоту треугольника со сторонами 112, 75 и 39
Найти высоту треугольника со сторонами 95, 49 и 48
Найти высоту треугольника со сторонами 93, 80 и 50
Найти высоту треугольника со сторонами 81, 74 и 26
Найти высоту треугольника со сторонами 108, 100 и 13
Найти высоту треугольника со сторонами 112, 75 и 39
Найти высоту треугольника со сторонами 95, 49 и 48