Рассчитать высоту треугольника со сторонами 87, 70 и 28
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{87 + 70 + 28}{2}} \normalsize = 92.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{92.5(92.5-87)(92.5-70)(92.5-28)}}{70}\normalsize = 24.5502141}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{92.5(92.5-87)(92.5-70)(92.5-28)}}{87}\normalsize = 19.7530458}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{92.5(92.5-87)(92.5-70)(92.5-28)}}{28}\normalsize = 61.3755351}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 87, 70 и 28 равна 24.5502141
Высота треугольника опущенная с вершины A на сторону BC со сторонами 87, 70 и 28 равна 19.7530458
Высота треугольника опущенная с вершины C на сторону AB со сторонами 87, 70 и 28 равна 61.3755351
Ссылка на результат
?n1=87&n2=70&n3=28
Найти высоту треугольника со сторонами 125, 120 и 61
Найти высоту треугольника со сторонами 106, 95 и 35
Найти высоту треугольника со сторонами 66, 35 и 32
Найти высоту треугольника со сторонами 135, 85 и 59
Найти высоту треугольника со сторонами 94, 88 и 60
Найти высоту треугольника со сторонами 126, 108 и 22
Найти высоту треугольника со сторонами 106, 95 и 35
Найти высоту треугольника со сторонами 66, 35 и 32
Найти высоту треугольника со сторонами 135, 85 и 59
Найти высоту треугольника со сторонами 94, 88 и 60
Найти высоту треугольника со сторонами 126, 108 и 22