Рассчитать высоту треугольника со сторонами 87, 74 и 30
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{87 + 74 + 30}{2}} \normalsize = 95.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{95.5(95.5-87)(95.5-74)(95.5-30)}}{74}\normalsize = 28.8967702}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{95.5(95.5-87)(95.5-74)(95.5-30)}}{87}\normalsize = 24.578862}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{95.5(95.5-87)(95.5-74)(95.5-30)}}{30}\normalsize = 71.2786999}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 87, 74 и 30 равна 28.8967702
Высота треугольника опущенная с вершины A на сторону BC со сторонами 87, 74 и 30 равна 24.578862
Высота треугольника опущенная с вершины C на сторону AB со сторонами 87, 74 и 30 равна 71.2786999
Ссылка на результат
?n1=87&n2=74&n3=30
Найти высоту треугольника со сторонами 120, 79 и 69
Найти высоту треугольника со сторонами 80, 80 и 20
Найти высоту треугольника со сторонами 100, 57 и 52
Найти высоту треугольника со сторонами 133, 118 и 77
Найти высоту треугольника со сторонами 134, 84 и 76
Найти высоту треугольника со сторонами 123, 111 и 49
Найти высоту треугольника со сторонами 80, 80 и 20
Найти высоту треугольника со сторонами 100, 57 и 52
Найти высоту треугольника со сторонами 133, 118 и 77
Найти высоту треугольника со сторонами 134, 84 и 76
Найти высоту треугольника со сторонами 123, 111 и 49