Рассчитать высоту треугольника со сторонами 87, 75 и 34
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{87 + 75 + 34}{2}} \normalsize = 98}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{98(98-87)(98-75)(98-34)}}{75}\normalsize = 33.5917027}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{98(98-87)(98-75)(98-34)}}{87}\normalsize = 28.9583644}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{98(98-87)(98-75)(98-34)}}{34}\normalsize = 74.0993441}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 87, 75 и 34 равна 33.5917027
Высота треугольника опущенная с вершины A на сторону BC со сторонами 87, 75 и 34 равна 28.9583644
Высота треугольника опущенная с вершины C на сторону AB со сторонами 87, 75 и 34 равна 74.0993441
Ссылка на результат
?n1=87&n2=75&n3=34
Найти высоту треугольника со сторонами 82, 74 и 33
Найти высоту треугольника со сторонами 146, 133 и 101
Найти высоту треугольника со сторонами 145, 77 и 73
Найти высоту треугольника со сторонами 57, 32 и 28
Найти высоту треугольника со сторонами 52, 52 и 41
Найти высоту треугольника со сторонами 141, 123 и 84
Найти высоту треугольника со сторонами 146, 133 и 101
Найти высоту треугольника со сторонами 145, 77 и 73
Найти высоту треугольника со сторонами 57, 32 и 28
Найти высоту треугольника со сторонами 52, 52 и 41
Найти высоту треугольника со сторонами 141, 123 и 84