Рассчитать высоту треугольника со сторонами 87, 84 и 19
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{87 + 84 + 19}{2}} \normalsize = 95}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{95(95-87)(95-84)(95-19)}}{84}\normalsize = 18.9784458}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{95(95-87)(95-84)(95-19)}}{87}\normalsize = 18.3240167}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{95(95-87)(95-84)(95-19)}}{19}\normalsize = 83.9047079}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 87, 84 и 19 равна 18.9784458
Высота треугольника опущенная с вершины A на сторону BC со сторонами 87, 84 и 19 равна 18.3240167
Высота треугольника опущенная с вершины C на сторону AB со сторонами 87, 84 и 19 равна 83.9047079
Ссылка на результат
?n1=87&n2=84&n3=19
Найти высоту треугольника со сторонами 120, 109 и 97
Найти высоту треугольника со сторонами 141, 116 и 36
Найти высоту треугольника со сторонами 87, 78 и 56
Найти высоту треугольника со сторонами 147, 136 и 110
Найти высоту треугольника со сторонами 54, 42 и 39
Найти высоту треугольника со сторонами 134, 97 и 91
Найти высоту треугольника со сторонами 141, 116 и 36
Найти высоту треугольника со сторонами 87, 78 и 56
Найти высоту треугольника со сторонами 147, 136 и 110
Найти высоту треугольника со сторонами 54, 42 и 39
Найти высоту треугольника со сторонами 134, 97 и 91