Рассчитать высоту треугольника со сторонами 87, 86 и 63
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{87 + 86 + 63}{2}} \normalsize = 118}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{118(118-87)(118-86)(118-63)}}{86}\normalsize = 59.0078416}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{118(118-87)(118-86)(118-63)}}{87}\normalsize = 58.3295905}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{118(118-87)(118-86)(118-63)}}{63}\normalsize = 80.5503869}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 87, 86 и 63 равна 59.0078416
Высота треугольника опущенная с вершины A на сторону BC со сторонами 87, 86 и 63 равна 58.3295905
Высота треугольника опущенная с вершины C на сторону AB со сторонами 87, 86 и 63 равна 80.5503869
Ссылка на результат
?n1=87&n2=86&n3=63
Найти высоту треугольника со сторонами 124, 115 и 40
Найти высоту треугольника со сторонами 135, 111 и 40
Найти высоту треугольника со сторонами 80, 80 и 74
Найти высоту треугольника со сторонами 120, 109 и 58
Найти высоту треугольника со сторонами 91, 50 и 48
Найти высоту треугольника со сторонами 37, 27 и 21
Найти высоту треугольника со сторонами 135, 111 и 40
Найти высоту треугольника со сторонами 80, 80 и 74
Найти высоту треугольника со сторонами 120, 109 и 58
Найти высоту треугольника со сторонами 91, 50 и 48
Найти высоту треугольника со сторонами 37, 27 и 21