Рассчитать высоту треугольника со сторонами 88, 62 и 59

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{88 + 62 + 59}{2}} \normalsize = 104.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{104.5(104.5-88)(104.5-62)(104.5-59)}}{62}\normalsize = 58.903159}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{104.5(104.5-88)(104.5-62)(104.5-59)}}{88}\normalsize = 41.4999529}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{104.5(104.5-88)(104.5-62)(104.5-59)}}{59}\normalsize = 61.8982349}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 88, 62 и 59 равна 58.903159
Высота треугольника опущенная с вершины A на сторону BC со сторонами 88, 62 и 59 равна 41.4999529
Высота треугольника опущенная с вершины C на сторону AB со сторонами 88, 62 и 59 равна 61.8982349
Ссылка на результат
?n1=88&n2=62&n3=59