Рассчитать высоту треугольника со сторонами 88, 64 и 60
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{88 + 64 + 60}{2}} \normalsize = 106}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{106(106-88)(106-64)(106-60)}}{64}\normalsize = 59.9988281}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{106(106-88)(106-64)(106-60)}}{88}\normalsize = 43.6355114}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{106(106-88)(106-64)(106-60)}}{60}\normalsize = 63.99875}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 88, 64 и 60 равна 59.9988281
Высота треугольника опущенная с вершины A на сторону BC со сторонами 88, 64 и 60 равна 43.6355114
Высота треугольника опущенная с вершины C на сторону AB со сторонами 88, 64 и 60 равна 63.99875
Ссылка на результат
?n1=88&n2=64&n3=60
Найти высоту треугольника со сторонами 100, 81 и 56
Найти высоту треугольника со сторонами 110, 104 и 69
Найти высоту треугольника со сторонами 86, 67 и 24
Найти высоту треугольника со сторонами 56, 37 и 26
Найти высоту треугольника со сторонами 79, 74 и 58
Найти высоту треугольника со сторонами 113, 105 и 62
Найти высоту треугольника со сторонами 110, 104 и 69
Найти высоту треугольника со сторонами 86, 67 и 24
Найти высоту треугольника со сторонами 56, 37 и 26
Найти высоту треугольника со сторонами 79, 74 и 58
Найти высоту треугольника со сторонами 113, 105 и 62