Рассчитать высоту треугольника со сторонами 88, 66 и 40
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{88 + 66 + 40}{2}} \normalsize = 97}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{97(97-88)(97-66)(97-40)}}{66}\normalsize = 37.636693}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{97(97-88)(97-66)(97-40)}}{88}\normalsize = 28.2275198}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{97(97-88)(97-66)(97-40)}}{40}\normalsize = 62.1005435}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 88, 66 и 40 равна 37.636693
Высота треугольника опущенная с вершины A на сторону BC со сторонами 88, 66 и 40 равна 28.2275198
Высота треугольника опущенная с вершины C на сторону AB со сторонами 88, 66 и 40 равна 62.1005435
Ссылка на результат
?n1=88&n2=66&n3=40
Найти высоту треугольника со сторонами 109, 108 и 66
Найти высоту треугольника со сторонами 143, 104 и 44
Найти высоту треугольника со сторонами 132, 108 и 76
Найти высоту треугольника со сторонами 132, 73 и 71
Найти высоту треугольника со сторонами 141, 122 и 72
Найти высоту треугольника со сторонами 145, 130 и 47
Найти высоту треугольника со сторонами 143, 104 и 44
Найти высоту треугольника со сторонами 132, 108 и 76
Найти высоту треугольника со сторонами 132, 73 и 71
Найти высоту треугольника со сторонами 141, 122 и 72
Найти высоту треугольника со сторонами 145, 130 и 47