Рассчитать высоту треугольника со сторонами 88, 67 и 50
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{88 + 67 + 50}{2}} \normalsize = 102.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{102.5(102.5-88)(102.5-67)(102.5-50)}}{67}\normalsize = 49.6815292}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{102.5(102.5-88)(102.5-67)(102.5-50)}}{88}\normalsize = 37.8257097}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{102.5(102.5-88)(102.5-67)(102.5-50)}}{50}\normalsize = 66.5732491}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 88, 67 и 50 равна 49.6815292
Высота треугольника опущенная с вершины A на сторону BC со сторонами 88, 67 и 50 равна 37.8257097
Высота треугольника опущенная с вершины C на сторону AB со сторонами 88, 67 и 50 равна 66.5732491
Ссылка на результат
?n1=88&n2=67&n3=50
Найти высоту треугольника со сторонами 83, 82 и 72
Найти высоту треугольника со сторонами 105, 104 и 51
Найти высоту треугольника со сторонами 121, 97 и 35
Найти высоту треугольника со сторонами 59, 44 и 38
Найти высоту треугольника со сторонами 88, 77 и 44
Найти высоту треугольника со сторонами 106, 101 и 35
Найти высоту треугольника со сторонами 105, 104 и 51
Найти высоту треугольника со сторонами 121, 97 и 35
Найти высоту треугольника со сторонами 59, 44 и 38
Найти высоту треугольника со сторонами 88, 77 и 44
Найти высоту треугольника со сторонами 106, 101 и 35