Рассчитать высоту треугольника со сторонами 88, 68 и 67
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{88 + 68 + 67}{2}} \normalsize = 111.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{111.5(111.5-88)(111.5-68)(111.5-67)}}{68}\normalsize = 66.2395055}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{111.5(111.5-88)(111.5-68)(111.5-67)}}{88}\normalsize = 51.1850724}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{111.5(111.5-88)(111.5-68)(111.5-67)}}{67}\normalsize = 67.2281549}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 88, 68 и 67 равна 66.2395055
Высота треугольника опущенная с вершины A на сторону BC со сторонами 88, 68 и 67 равна 51.1850724
Высота треугольника опущенная с вершины C на сторону AB со сторонами 88, 68 и 67 равна 67.2281549
Ссылка на результат
?n1=88&n2=68&n3=67
Найти высоту треугольника со сторонами 129, 100 и 67
Найти высоту треугольника со сторонами 126, 94 и 84
Найти высоту треугольника со сторонами 139, 117 и 42
Найти высоту треугольника со сторонами 90, 65 и 56
Найти высоту треугольника со сторонами 103, 72 и 47
Найти высоту треугольника со сторонами 123, 106 и 30
Найти высоту треугольника со сторонами 126, 94 и 84
Найти высоту треугольника со сторонами 139, 117 и 42
Найти высоту треугольника со сторонами 90, 65 и 56
Найти высоту треугольника со сторонами 103, 72 и 47
Найти высоту треугольника со сторонами 123, 106 и 30