Рассчитать высоту треугольника со сторонами 88, 69 и 30
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{88 + 69 + 30}{2}} \normalsize = 93.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{93.5(93.5-88)(93.5-69)(93.5-30)}}{69}\normalsize = 25.9261459}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{93.5(93.5-88)(93.5-69)(93.5-30)}}{88}\normalsize = 20.3284553}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{93.5(93.5-88)(93.5-69)(93.5-30)}}{30}\normalsize = 59.6301355}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 88, 69 и 30 равна 25.9261459
Высота треугольника опущенная с вершины A на сторону BC со сторонами 88, 69 и 30 равна 20.3284553
Высота треугольника опущенная с вершины C на сторону AB со сторонами 88, 69 и 30 равна 59.6301355
Ссылка на результат
?n1=88&n2=69&n3=30
Найти высоту треугольника со сторонами 105, 100 и 16
Найти высоту треугольника со сторонами 128, 125 и 121
Найти высоту треугольника со сторонами 119, 103 и 78
Найти высоту треугольника со сторонами 103, 79 и 34
Найти высоту треугольника со сторонами 125, 115 и 104
Найти высоту треугольника со сторонами 108, 86 и 33
Найти высоту треугольника со сторонами 128, 125 и 121
Найти высоту треугольника со сторонами 119, 103 и 78
Найти высоту треугольника со сторонами 103, 79 и 34
Найти высоту треугольника со сторонами 125, 115 и 104
Найти высоту треугольника со сторонами 108, 86 и 33