Рассчитать высоту треугольника со сторонами 88, 79 и 15
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{88 + 79 + 15}{2}} \normalsize = 91}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{91(91-88)(91-79)(91-15)}}{79}\normalsize = 12.6322772}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{91(91-88)(91-79)(91-15)}}{88}\normalsize = 11.3403398}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{91(91-88)(91-79)(91-15)}}{15}\normalsize = 66.5299932}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 88, 79 и 15 равна 12.6322772
Высота треугольника опущенная с вершины A на сторону BC со сторонами 88, 79 и 15 равна 11.3403398
Высота треугольника опущенная с вершины C на сторону AB со сторонами 88, 79 и 15 равна 66.5299932
Ссылка на результат
?n1=88&n2=79&n3=15
Найти высоту треугольника со сторонами 147, 131 и 46
Найти высоту треугольника со сторонами 90, 57 и 54
Найти высоту треугольника со сторонами 118, 115 и 15
Найти высоту треугольника со сторонами 135, 81 и 67
Найти высоту треугольника со сторонами 101, 93 и 21
Найти высоту треугольника со сторонами 132, 119 и 75
Найти высоту треугольника со сторонами 90, 57 и 54
Найти высоту треугольника со сторонами 118, 115 и 15
Найти высоту треугольника со сторонами 135, 81 и 67
Найти высоту треугольника со сторонами 101, 93 и 21
Найти высоту треугольника со сторонами 132, 119 и 75