Рассчитать высоту треугольника со сторонами 88, 84 и 72
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{88 + 84 + 72}{2}} \normalsize = 122}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{122(122-88)(122-84)(122-72)}}{84}\normalsize = 66.8416072}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{122(122-88)(122-84)(122-72)}}{88}\normalsize = 63.8033523}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{122(122-88)(122-84)(122-72)}}{72}\normalsize = 77.9818751}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 88, 84 и 72 равна 66.8416072
Высота треугольника опущенная с вершины A на сторону BC со сторонами 88, 84 и 72 равна 63.8033523
Высота треугольника опущенная с вершины C на сторону AB со сторонами 88, 84 и 72 равна 77.9818751
Ссылка на результат
?n1=88&n2=84&n3=72
Найти высоту треугольника со сторонами 105, 76 и 56
Найти высоту треугольника со сторонами 104, 100 и 43
Найти высоту треугольника со сторонами 120, 64 и 62
Найти высоту треугольника со сторонами 117, 83 и 74
Найти высоту треугольника со сторонами 100, 99 и 28
Найти высоту треугольника со сторонами 136, 98 и 80
Найти высоту треугольника со сторонами 104, 100 и 43
Найти высоту треугольника со сторонами 120, 64 и 62
Найти высоту треугольника со сторонами 117, 83 и 74
Найти высоту треугольника со сторонами 100, 99 и 28
Найти высоту треугольника со сторонами 136, 98 и 80