Рассчитать высоту треугольника со сторонами 88, 86 и 23
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{88 + 86 + 23}{2}} \normalsize = 98.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{98.5(98.5-88)(98.5-86)(98.5-23)}}{86}\normalsize = 22.9759137}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{98.5(98.5-88)(98.5-86)(98.5-23)}}{88}\normalsize = 22.4537339}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{98.5(98.5-88)(98.5-86)(98.5-23)}}{23}\normalsize = 85.9099382}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 88, 86 и 23 равна 22.9759137
Высота треугольника опущенная с вершины A на сторону BC со сторонами 88, 86 и 23 равна 22.4537339
Высота треугольника опущенная с вершины C на сторону AB со сторонами 88, 86 и 23 равна 85.9099382
Ссылка на результат
?n1=88&n2=86&n3=23
Найти высоту треугольника со сторонами 129, 125 и 33
Найти высоту треугольника со сторонами 149, 136 и 115
Найти высоту треугольника со сторонами 140, 125 и 55
Найти высоту треугольника со сторонами 40, 35 и 12
Найти высоту треугольника со сторонами 140, 99 и 67
Найти высоту треугольника со сторонами 133, 121 и 103
Найти высоту треугольника со сторонами 149, 136 и 115
Найти высоту треугольника со сторонами 140, 125 и 55
Найти высоту треугольника со сторонами 40, 35 и 12
Найти высоту треугольника со сторонами 140, 99 и 67
Найти высоту треугольника со сторонами 133, 121 и 103