Рассчитать высоту треугольника со сторонами 89, 55 и 50
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{89 + 55 + 50}{2}} \normalsize = 97}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{97(97-89)(97-55)(97-50)}}{55}\normalsize = 45.0061373}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{97(97-89)(97-55)(97-50)}}{89}\normalsize = 27.8127815}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{97(97-89)(97-55)(97-50)}}{50}\normalsize = 49.5067511}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 89, 55 и 50 равна 45.0061373
Высота треугольника опущенная с вершины A на сторону BC со сторонами 89, 55 и 50 равна 27.8127815
Высота треугольника опущенная с вершины C на сторону AB со сторонами 89, 55 и 50 равна 49.5067511
Ссылка на результат
?n1=89&n2=55&n3=50
Найти высоту треугольника со сторонами 149, 142 и 119
Найти высоту треугольника со сторонами 119, 72 и 70
Найти высоту треугольника со сторонами 121, 103 и 46
Найти высоту треугольника со сторонами 67, 62 и 34
Найти высоту треугольника со сторонами 90, 90 и 46
Найти высоту треугольника со сторонами 131, 99 и 91
Найти высоту треугольника со сторонами 119, 72 и 70
Найти высоту треугольника со сторонами 121, 103 и 46
Найти высоту треугольника со сторонами 67, 62 и 34
Найти высоту треугольника со сторонами 90, 90 и 46
Найти высоту треугольника со сторонами 131, 99 и 91