Рассчитать высоту треугольника со сторонами 89, 65 и 38
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{89 + 65 + 38}{2}} \normalsize = 96}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{96(96-89)(96-65)(96-38)}}{65}\normalsize = 33.8217534}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{96(96-89)(96-65)(96-38)}}{89}\normalsize = 24.7012806}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{96(96-89)(96-65)(96-38)}}{38}\normalsize = 57.8529993}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 89, 65 и 38 равна 33.8217534
Высота треугольника опущенная с вершины A на сторону BC со сторонами 89, 65 и 38 равна 24.7012806
Высота треугольника опущенная с вершины C на сторону AB со сторонами 89, 65 и 38 равна 57.8529993
Ссылка на результат
?n1=89&n2=65&n3=38
Найти высоту треугольника со сторонами 146, 121 и 31
Найти высоту треугольника со сторонами 126, 124 и 116
Найти высоту треугольника со сторонами 98, 60 и 49
Найти высоту треугольника со сторонами 114, 114 и 48
Найти высоту треугольника со сторонами 56, 49 и 33
Найти высоту треугольника со сторонами 136, 130 и 39
Найти высоту треугольника со сторонами 126, 124 и 116
Найти высоту треугольника со сторонами 98, 60 и 49
Найти высоту треугольника со сторонами 114, 114 и 48
Найти высоту треугольника со сторонами 56, 49 и 33
Найти высоту треугольника со сторонами 136, 130 и 39