Рассчитать высоту треугольника со сторонами 89, 68 и 29
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{89 + 68 + 29}{2}} \normalsize = 93}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{93(93-89)(93-68)(93-29)}}{68}\normalsize = 22.690943}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{93(93-89)(93-68)(93-29)}}{89}\normalsize = 17.3369002}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{93(93-89)(93-68)(93-29)}}{29}\normalsize = 53.206349}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 89, 68 и 29 равна 22.690943
Высота треугольника опущенная с вершины A на сторону BC со сторонами 89, 68 и 29 равна 17.3369002
Высота треугольника опущенная с вершины C на сторону AB со сторонами 89, 68 и 29 равна 53.206349
Ссылка на результат
?n1=89&n2=68&n3=29
Найти высоту треугольника со сторонами 103, 65 и 45
Найти высоту треугольника со сторонами 135, 133 и 125
Найти высоту треугольника со сторонами 145, 144 и 69
Найти высоту треугольника со сторонами 118, 101 и 85
Найти высоту треугольника со сторонами 54, 37 и 19
Найти высоту треугольника со сторонами 106, 89 и 24
Найти высоту треугольника со сторонами 135, 133 и 125
Найти высоту треугольника со сторонами 145, 144 и 69
Найти высоту треугольника со сторонами 118, 101 и 85
Найти высоту треугольника со сторонами 54, 37 и 19
Найти высоту треугольника со сторонами 106, 89 и 24